An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model

نویسندگان

چکیده

This paper adopts an efficient meshless approach for approximating the nonlinear fractional fourth-order diffusion model described in Riemann–Liouville sense. A second-order difference technique is applied to discretize temporal derivatives, while radial basis function generated finite scheme approximates spatial derivatives. One key advantage of local collocation method approximation derivatives via formulation, each local-support domain, by deriving functions expansion. Another this that it can be problems with non-regular geometrical domains. For proposed time discretization, unconditional stability examined and error bound obtained. Numerical results illustrate applicability validity confirm theoretical formulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient approach for solving layout problems

This paper offers an approach that could be useful for diverse types of layout problems or even area allocation problems. By this approach there is no need to large number of discrete variables and only by few continues variables large-scale layout problems could be solved in polynomial time. This is resulted from dividing area into discrete and continuous dimensions. Also defining decision var...

متن کامل

Dependence of Fractional Order Diffusion Model Parameters on Diffusion Time

INTRODUCTION At high b-values (e.g., ≥1,500 s/mm), it is well known that diffusion-induced MR signal loss in the brain tissue exhibits anomalous behavior that cannot be described by a mono-exponential function. This phenomenon has been attributed to tissue heterogeneity manifested by cellular structures, cell membranes, and/or intraand extra-cellular spaces [1]. Over the past few years, a numbe...

متن کامل

Solution of Higher Order Nonlinear Time-Fractional Reaction Diffusion Equation

The approximate analytical solution of fractional order, nonlinear, reaction differential equations, namely the nonlinear diffusion equations, with a given initial condition, is obtained by using the homotopy analysis method. As a demonstration of a good mathematical model, the present article gives graphical presentations of the effect of the reaction terms on the solution profile for various ...

متن کامل

An efficient analytical approach for solving fourth order boundary value problems

Based on the homotopy analysis method (HAM), an efficient approach is proposed for obtaining approximate series solutions to fourth order two-point boundary value problems. We apply the approach to a linear problem which involves a parameter c and cannot be solved by other analytical methods for large values of c, and obtain convergent series solutions which agree very well with the exact solut...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of King Saud University - Science

سال: 2021

ISSN: ['1018-3647', '2213-686X']

DOI: https://doi.org/10.1016/j.jksus.2020.101243